

AFRL-IF-RS-TR-2006-103
Final Technical Report
March 2006

CYBER EARLY WARNING SYSTEM (CEWAS)

Telcordia Technologies

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2006-103 has been reviewed and is approved for publication.

APPROVED: /s/

 WLADIMIR TIRENIN
 Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2006

3. REPORT TYPE AND DATES COVERED
Final Aug 04 – Dec 06

4. TITLE AND SUBTITLE
CYBER EARLY WARNING SYSTEM (CEWAS)

6. AUTHOR(S)
Rajesh Talpade, Abhrajit Ghosh

5. FUNDING NUMBERS
C - F30602-03-C-0239
PE - 31011G
PR - B104
TA - 00
WU - 10

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Telcordia Technologies
1 Telcordia Drive
Piscataway New Jersey 08854

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-103

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Wladimir Tirenin /IFGB/(315) 330-1871/ Wladimir.Tirenin@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Telcordia has developed innovative technology for the detection of packets with fictitious source IP addresses in large
IP networks (e.g. NIPRNet). We present the predictive Ingress Filtering (InFilter) approach for network-based detection
of spoofed IP packets near the target of cyber-attacks. Our InFilter hypothesis states that traffic entering an IP network
from a specific source frequently uses the same ingress point. We have empirically validated this hypothesis by
analysis of 41,000 trace-routes to 20 Internet targets from 24 Looking-Glass sites, and 30-days of Border Gateway
Protocol-derived path information for the same 20 targets. We have developed a system architecture and software
implementation based on the InFilter approach that can be used at Border Routers of large IP networks to detect
spoofed IP traffic. Extensive experimentation revealed that CEWAS exhibited a detection rate of between 80 and
100%, depending on the attack frequency. The false positive rate for CEWAS was typically around 1.6% of all observed
traffic in the target network. Both these metrics compare favorably with state-of-the-art in Intrusion Detection Systems
that do not use signatures of attacks. The project has resulted in two research papers being published in high-quality
peer-reviewed conferences, in addition to a patent-application.

15. NUMBER OF PAGES
52

14. SUBJECT TERMS
NIPRNet, InFilter

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1 Introduction 1

2 Related work 2

3 InFilter Concepts & Validation 3
3.1 Traceroute based empirical validation 4

3.1.1 Results 5
3.2 BGP based empirical validation 6

4 Enhancing the InFilter hypothesis 8
4.1 Scan Analysis 8
4.2 NNS Search 9

5 Implementation 12
5.1 Architectural components 12

5.1.1 Data Generation: NetFlow 1
5.1.2 Data Collection: FlowTools 2
5.1.3 Data Analysis Modules 3
5.1.4 Alert User Interface 3

5.2 Operational Phases 4
5.2.1 Training phase 4
5.2.2 Normal Processing phase 5

5.3 Demonstration of Attack Detection Capabilities 5
5.3.1 Dagreplay and Dagflow 6
5.3.2 Demonstration Scenarios 7

6 Telcordia Experimental Evaluation (Phase I) 8
6.1 Experimental Setup 8

6.1.1 Attack traffic source 12
6.2 Testbed Experiments 12

6.2.1 Spoofed attacks 13
6.2.2 Stress testing with spoofed attacks 14
6.2.3 Spoofed attacks with route changes 14

6.3 Testbed Experiment Results 14

7 Experimentation on DETER testbed (Phase II) 17
7.1 Configuring DETER for CEWAS Experimentation 18
7.2 Overview of Experimentation 19
7.3 DETER Validation Experiments 20
7.4 DETER Scalability Experiments 20

7.4.1 Node Limitation Experiments 20
7.4.2 Traffic Volume Scalability Experiments 22

 ii

7.5 NIPRNet Emulation Experiments 23
7.5.1 NIPRNet Topology and Emulated Network 24
7.5.2 Software Tools Used 25
7.5.3 Initialization of EIA Sets 25
7.5.4 Impact of Link Failures 27
7.5.5 Link Failures and Randomized Attacks 29

8 Summary 32

9 References 33

List of Figures

Figure 1: Relative Stability of Route between Source and Target 2
Figure 2: Mapping between source IP addresses and peer AS 4
Figure 3: Validation using Looking Glass sites 5
Figure 4: Non-aggregated vs. Aggregated Case 6
Figure 5: Change in source AS set for each target network 8
Figure 6: NNS structure creation algorithm 10
Figure 7: NNS structure creation support procedures 11
Figure 8: NNS search algorithm 11
Figure 9: InFilter Architecture 1
Figure 10: NetFlow Keys 1
Figure 11: Training phase 4
Figure 12: Normal processing phase 5
Figure 13: CEWAS Demonstration Testbed 7
Figure 14: CEWAS experimental testbed 9
Figure 15: ISP topology emulated by experimental testbed 10
Figure 16: Attack detection rate 15
Figure 17: False positive rate 15
Figure 18: False positive rate with route change – Basic InFilter 16
Figure 19: False positive rate with route change – Enhanced InFilter 16
Figure 20: False positive rate at 8% attack volume for Basic & Enhanced InFilter versions 17
Figure 21: DETER Schematic 18
Figure 22: Configuring DETER for CEWAS Experimentation 19
Figure 23: Scalability Tests: DETER Node Limitations 21
Figure 24: Results of DETER Node Limitations Experiments 22
Figure 25: Scalability Experiments: DETER Traffic Volume 23
Figure 26: Results of DETER Traffic Volume Experiments 24
Figure 27: NIPRNet CONUS Topology 25
Figure 28: Emulation of NIPRNet on DETER 26
Figure 29: Results of EIA Set Initialization 27
Figure 30: Results of Link Failures (Normal case) 28
Figure 31: Results for Link Failures (Pathological case) 29
Figure 32: Detection Rate for relatively stable network 30
Figure 33: Detection Rate for relatively unstable network 31
Figure 34: False Positive Rate for both network types 31

 iii

List of Tables

Table 1: Attacks used during CEWAS Demonstration 6
Table 2: Publicly-routable, allocated IP unicast address blocks 10
Table 3: Allocation of address blocks to Dagflow sources with 2% emulated route changes 11
Table 4: EIA set allocations 13

1

1 Introduction
“Spoofed” IP packets (packets with incorrect source IP addresses) are often used [CERT,
MERI] by Internet-based attackers for anonymity to reduce the risk of trace-back, and to
avoid attack detection by network-based sensors. It is fairly trivial for a skillful attacker
to use an incorrect source IP address in attack traffic emanating from most widely-used
Operating Systems. Since IP routing is destination-based, spoofed IP packets get
delivered to the intended target without much difficulty.

Spoofed IP packets are particularly prevalent in Distributed Denial of Service
(DDoS) attacks, wherein an attacker can compel multiple intermediate compromised
hosts to inundate a target host or network with a cumulatively high-volume IP traffic
stream. Detection of such DDoS attacks by network-based sensors is difficult since
spoofing ensures that traffic volume from individual hosts appears to be low. In addition
to high-volume attacks such as DDoS, relatively stealthy attacks may also make use of
spoofed IP packets. A notable example is the Slammer worm [SLAM] which sends out a
single source IP spoofed UDP packet that compromises the destination node. Such
attacks are typically detected using packet signatures deployed at network-based sensors.
There is a non-trivial cost overhead associated with the identification and deployment of
such signatures, and processing of network traffic for signature-based detection.

We present the predictive ingress filtering (InFilter) approach for detection of
spoofed IP packets entering a large IP network. The InFilter approach is based on the
hypothesis that traffic entering a large IP network frequently uses the same ingress point.
This observation permits the creation of filters that can detect abnormal shifts in the
traffic patterns due to spoofed IP packets. The ingress pattern has relatively low
variability, as validated by our analysis of 41,000 trace-routes to 20 targets from 24
Looking-Glass sites, and 30-days of Border Gateway Protocol-derived [BGP] path
information from www.routeviews.org for the same 20 targets. Hence suspected attack
packets can be detected with fairly high certainty based on the ingress point into the
destination network and the source IP address. The InFilter approach thus can identify
suspected attack packets, avoiding the need for in-depth analysis of all traffic entering the
network. It is important to note that we do not claim that the complete path from the
source to destination remains static; other studies such as [LABO] and [VPAX] have
demonstrated the variability of the complete IP-level path from a source to destination.
We focus on the last ingress point of the path. Special attention has been paid to ensure
the practicality of our approach and its applicability to large IP networks. Further, the
approach can be easily extended to provide traceback capability to detect the ingress
point of attack traffic into large IP networks.

The relatively infrequent variations in the ingress pattern for a large IP network
occur because of routing changes. It is possible for the basic InFilter based detection
approach to raise false positives during such routing changes. Reduction in the number of
such false positives may be achieved by further analyzing the traffic flagged by the basic
InFilter approach. For this purpose we make use of an efficient anomaly detection
technique based on high dimensional nearest neighbor search (NNS) [KOR]. We also
incorporate a simple scheme to detect spoofed scanning attacks that target either
individual hosts or multiple hosts in a network. This enhances the NNS algorithms by
providing cumulative information across multiple flows. We perform anomaly detection

2

on packet flows rather than on individual packets thus amortizing the analysis overhead
to some extent. We refer to the basic InFilter approach when used in conjunction with
anomaly detection as the Enhanced InFilter approach.

We have developed a prototype of the Enhanced InFilter approach and tested its
performance in a laboratory environment. The ability of the Enhanced InFilter software
to detect stealthy attacks (Puke, Jolt, Teardrop, Slammer), and traffic-based DDoS attacks
(TFN2K), which use spoofed addresses, has been demonstrated on our test-bed. These
attacks can impact system availability and compromise system integrity. Each of the
above stealthy attacks involved one or very few packets, and were not detected by the
prevailing COTS IDS [SNORT] when they were launched. Note that we do not rely on
signatures of these attacks for detection, which would trivialize the problem. The idea is
to treat these attacks as if they have not yet been discovered, and then see how our
approach can detect them in the absence of prior knowledge.

Section 2 of this report describes related work. Section 3 describes the concept
and empirical validation of the InFilter hypothesis. Section 4 presents the Scan Analysis
and Nearest Neighbor Search algorithms used by the Enhanced InFilter software. Section
5 describes the software implementation, and addresses issues such as data generation,
collection, analysis, Enhanced InFilter deployment, operational phases, and
demonstration scenarios. Section 6 presents the Telcordia experimental testbed, tools
used therein, experiment methodology and the results of Phase I experimentation. Section
7 discusses experimentation on the large-scale DETER testbed during Phase II. Section 8
concludes by discussing possible approaches for using the CEWAS software on IC
networks such as NIPRNet.

2 Related work
Egress filtering [EGRESS] is commonly recommended to prevent networks from
becoming sources of spoofed cyber-attacks. InFilter provides the complementary
capability near targets of cyber-attacks. Both rely on the relative stability of the route
close to a source and target in the Internet. The variation of the route as a function of
distance from a source is illustrated in Figure 1.

Figure 1: Relative Stability of Route between Source and Target

The InFilter approach is significantly different from Unicast Reverse Path

Forwarding [URPF]. URPF assumes that the ingress point used by traffic from a source is

Distance of Target from Source

Route
Stability

- Egress Filtering operates
in this region

- InFilter operates
in this region

Distance of Target from Source

Route
Stability

- Egress Filtering operates
in this region

- InFilter operates
in this region

3

the same as the egress point for traffic destined to that source (as determined from the
local routing table at the router under consideration). InFilter does not rely on this
assumption since it is not necessarily true at boundaries between large IP networks.

[Templeton] discusses attacks using spoofed packets and a wide variety of
methods for detecting spoofed packets. Detection methods are classified as active or
passive host-based methods and routing based methods. Our work falls into the category
of routing based methods. The routing based detection methods discussed in [Templeton]
focus on distinguishing between addresses that are external and internal to a network
whereas our work attempts to distinguish amongst external addresses.

[Peng] presents a scheme to defend against Distributed Denial of Service (DDoS)
attacks based on IP source address filtering. The edge router keeps a history of all the
legitimate IP addresses which have previously appeared in the network. When the edge
router is overloaded, this history is used to decide whether to admit an incoming IP
packet. This approach does not take advantage of information present across multiple
edge routers to determine if a packet is spoofed. Additionally it is primarily targeted
towards high volume DDoS attacks, while our scheme is designed to detect low volume
stealthy attacks in addition to the former.

3 InFilter Concepts & Validation
The Ingress Filter (InFilter) hypothesis can be explained using the target network in
Figure 2, which has 4 peer Autonomous Systems (AS), each connected by a Border
Router (BR). The target network can be considered to be the IP backbone of a large
Internet Service Provider that contains the actual target site or victim of an Internet-based
attack, such as a Distributed Denial of Service (DDoS) attack. One of the peer ASs of the
target network is used by traffic from other networks (containing IP address ranges IPA1,
IPB1 … IPB4) to enter the target network. The InFilter hypothesis states that the
mapping between a source IP address range (i.e. one of IPA1, IPB1… IPB4) and the peer
AS used by its traffic to enter the target network has low variability. E.g. traffic from
address ranges IPA3, IPB3, and IPC3 will consistently use peer AS3 to enter the target
network, rather than peer AS1, AS2 or AS4.

The hypothesis was validated using two different approaches as explained below.
The first mechanism involved active measurements using traceroute [STEV] from
multiple Looking Glass sites to multiple “target” sites to determine the change in the IP-
level last-hop. The second mechanism involved passive measurements of BGP AS-level
path information from a BGP server (Routeviews) to determine the change in AS-level
last hop.

4

BR1
Peer AS1

Peer AS3
Peer AS4

Peer AS2

BR3 BR2

Target
Network

IPA1 IPB1
IPA2 IPB2

IPA4

IPB4
IPA3

IPB3

IPC3

 Expected IP Addresses

Peer AS1 – BR1 IPA1, IPB1
Peer AS2- BR2 IPA2, IPB2
Peer AS3 – BR3 IPA3, IPB3, IPC3
Peer AS4 – BR2 IPA4, IPB4

Figure 2: Mapping between source IP addresses and peer AS

3.1 Traceroute based empirical validation
There are numerous Looking Glass [LGST] sites hosted by ISPs and other institutions
that allow the traceroute command to be executed from the site to any IP address. The
output of such traceroute provides the IP-level path from the Looking Glass site to the
specified IP address. We used this mechanism for tracing the paths from 24 Looking
Glass sites to 20 IP addresses, each belonging to one of 20 target networks. The Looking
Glass sites were distributed globally, and the 20 target networks were located in the USA.
The goal was to determine the variability of the last AS-level hop to the target network. A
Java script that executed the appropriate traceroute command periodically on each of the
Looking Glass sites was written for this purpose. The period for trace-routes was initially
set at 30 minutes for a 24 hour run. It was changed to 60 minutes for a 4 day run to avoid
over-loading the Looking Glass sites, and the resulting loss of our privileges. The output
was parsed to determine whether there was a change in the last hop from the previous
reading i.e. whether the Peer AS-BR hop (from Figure 3) changed on path from the
Looking Glass site to the target network. We reiterate that we are not concerned about the
complete path from the Looking Glass site to the target network, but on the last AS-level
hop of the path.

5

The Peer AS and BR entities are identified by IP addresses in the traceroute
output, which were considered “raw” values. In reality, this hop is often implemented as
a pair (or more) of redundant/load-sharing links between the Peer AS and the BR (as in
Figure 4). As such, the traceroute output may capture this change in either the Peer AS or
the BR IP address from one reading to the next. Parsing the “raw” traceroute values
would have noted this as a “change” in the last hop, which is not necessarily true. Hence
we relaxed the requirement of matching IP addresses to the matching of subnet values,
assuming /24 subnet masks. While this modification captured much of the
redundant/load-sharing links, some links tended to have different subnet values as well.
This was addressed by using the Fully Qualified Domain Names (FQDN) of the Peer AS
and BR for identification.

Target Network

Target Site

Border Router (BR)

Peer AS

Looking Glass Site Telcordia
Traceroute command

Traceroute result

Figure 3: Validation using Looking Glass sites

3.1.1 Results
24-hour run
• Each Looking Glass site hits each target site every 30 minutes, about 10,000 samples

(some trace-routes did not complete, hence fewer samples)
• Either raw Peer or raw BR IP address changes from one sample to next (non-

aggregated case): 4.8% of all samples
• After eliminating obvious redundancy/load balancing links and incorporating FQDN

smoothing, effective changes are (aggregated case): 0.4% of all samples

4-day run
• Each Looking Glass site hits each target site every 60 minutes: about 31,000 samples

(some trace-routes did not complete, hence fewer samples))
• Either raw Peer or raw BR IP address changes from one sample to next (non-

aggregated case): 6.4% of all samples
• Changes after incorporating FQDN smoothing (aggregated case): 0.6% of all samples

6

Results from both the 24-hour and the 4-day runs seem to indicate that the Peer
AS-BR pair (i.e. last hop) for the path from any Looking Glass site to any target ISP is
the same for almost all of the periodic readings, especially when the “raw” Peer AS and
BR values are processed for eliminating redundancy/load balancing links. It is of course
possible for the last-hop to change and then revert to the original between successive
readings, which is not captured by our methodology. However the large number of
readings and the low change rate for both the runs with different sampling periods seem
to imply that the last-hop is indeed stable.

BR BR

Target Target

Peer AS Peer AS

LG Site LG Site

Non-Aggregated Aggregated

Figure 4: Non-aggregated vs. Aggregated Case

3.2 BGP based empirical validation
We used BGP AS path information from Routeviews [RTVW] for validating the
hypothesis. Our approach is based on the observation that each AS only advertises to its
peers the "best" AS-level path it knows to a specific target network. So given an AS-level
path to a target network in the routeviews data, the "best" path that traffic from each of
the source ASs on the path would take to the target network can be determined. E.g. from
“show ip bgp”
Network Next Hop Path
* 4.0.0.0 141.142.12.1 1224 38 10514 3356 1 I

The "best" AS-level path for traffic from source AS 1224 to 4.0.0.0 is 38-10514-
3356-1; "best" path for traffic from source AS 38 is 10514-3356-1; "best" path for traffic
from source AS 10514 is 3356-1. Thus the peer AS to use for getting to target network
can be determined for each source AS. A sample output and analysis of the routeviews
“show ip bgp” data from 2002-06-23-1000.dat is indicated below.

Network Next Hop Path
* 4.0.0.0 193.0.0.56 3333 9057 3356 1 i
.... (some lines deleted)
* 217.75.96.60 16150 8434 286 1 1

7

.... (some lines deleted)
* 141.142.12.1 1224 38 10514 3356 1 i
.... (some lines deleted)
* 4.2.101.0/24 141.142.12.1 1224 38 6325 1 i
* 202.249.2.86 7500 2497 1 i
* 203.194.0.5 9942 1 i
* 66.203.205.62 852 1 i
* 167.142.3.6 5056 1 e
* 206.220.240.95 10764 1 i
* 157.130.182.254 19092 1 i
* 203.62.252.26 1221 4637 1 i
* 202.232.1.91 2497 1 i
*> 4.0.4.90 1 i
Target AS: 1
Relevant IP address blocks: 4.0.0.0, 4.2.101.0/24
Peer ASs: 3356, 286, 6325, 2497, 9942, 852, 5056, 10764, 19092, 4637, 2497
Source ASs: 3333, 9057, 16150, 8434, 1224, 38, 10514, 7500, 1221
Mapping from source ASs to peer ASs for target 4.2.101.20:
Peer AS Source AS set
3356 3333, 9057, 10514
286 16150, 8434
6325 1224, 38
2497 7500
4637 1221

Note that ASs 1224 and 38 are considered in Source AS set of AS 6325 rather
than AS 3356 4.2.101.0/24 is more specific than 4.0.0.0/8. Hence AS 6325 will be used
by traffic from AS 1224 and AS 38 to get to target 4.2.101.20.

The goal was to determine the variability of the mapping between peer ASs to
source ASs for a specific target network (e.g. 4.2.101.20 on Genuity's network). The
same set of 20 target networks as used in the Looking Glass analysis were used at the AS
level. For each target network, the set of peer ASs and corresponding source AS set was
tracked over 30 days, every 2 hours (346 data points; some data points not computed due
to absence of Routeviews data). As indicated in Figure 5, the average change in source
AS set (for each target network) between successive readings was 1.6%, and maximum
change was 5%. The change is dependent on number of peer ASs for target network.
Mapping between peer ASs and source ASs is more stable than previously thought.

Both the traceroute and BGP analysis thus validate the InFilter hypothesis. We
conjecture that the peer AS to source AS mapping remains relatively static since traffic
between neighboring ASs is governed by routing policies using BGP, which change
relatively infrequently as compared to paths within an AS that are governed by the
instantaneous shortest-path established by the local interior routing protocol such as Open
Shortest Path First [OSPF].

The basic InFilter approach is easily leveraged for spoofed IP packet detection.
This would require the deployment of a monitoring system with access to information on
traffic flows entering the target network. The system would maintain a data structure
containing the Expected source IP Address set (EIA set) on a per Peer AS basis.

8

Incoming traffic with a source IP address not present in the corresponding Peer AS’ EIA
set would be flagged as a potential attack. We present the architecture and operation of
such a system in section 5. Issues such as initialization of EIA sets and handling of route
changes are dealt with in that section.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60

Number of Peer ASs

Fr
ac

tio
na

l s
ou

rc
e

A
S

se
t c

ha
ng

e

Figure 5: Change in source AS set for each target network

4 Enhancing the InFilter hypothesis
The basic InFilter approach, as outlined in section 3 above, is enhanced by performing
further analysis on traffic entering the target network. The objective of this analysis
would be to reduce potential false positives that may be raised by the basic InFilter
approach. Such false positives can be raised as a consequence of variation in the Peer AS
used for target network ingress by normal traffic from a particular source node. These
variations, albeit infrequent, can be triggered as a consequence of route changes. As a
consequence of such variations, legal traffic could be flagged as an attack by the basic
InFilter approach. Minimization of these false positives would be achieved by detecting
the Peer AS change and updating the Expected source IP Address sets (EIA sets) for the
affected Peer ASs. We use two approaches for reducing the false positives, NNS Search
and Scan Analysis, which are now described.

4.1 Scan Analysis
Many attacks such as [SLAM] select random target hosts to infect in a target network. A
characteristic of such attacks is that the destination port is typically fixed across all the
attack flows targeting distinct hosts. This occurs because such attacks usually target a
single vulnerability on the destination host. The source IP address on such attack packets
is typically spoofed to minimize the possibility of traceback. The attack described in
[SLAM] consists of a single UDP packet sent to multiple destinations on the target
network. The exploit does not require the transmission of any packets from the target
back to the source making it easy to spoof the source IP address on the attack packet. We
refer to such attacks as network scan attacks.

9

Many network attacks require a separate scan phase wherein the target host is
required to provide some form of feedback to the attack source. However, the Idlescan
option in nmap [NMAP] makes it possible to do truly blind scanning where packets with
spoofed source IP addresses are sent to scan the target host. Such attack scans typically
target multiple ports on the same destination host. We refer to them as host scan attacks.

We employ a simplified version of the schemes discussed in [MINDS] &
[STOLFO] to detect such spoofed network and host scan attacks. We maintain a buffer of
spoofed flows received in a network. Since spoofing is expected to not occur excessively,
especially when stealthy attacks are being employed, we don’t anticipate such a buffer
would have very large memory requirements. In the experiments discussed in this paper
we used a buffer of about 200 flows. To detect network scan attacks we maintain a data
structure that counts the number of flows in the flow buffer that target a particular
destination port across multiple distinct hosts. Host scans are detected by maintaining
another data structure that counts the number of buffered flows that target multiple
destination ports on the same host. If either of the counts exceeds a configurable
threshold we flag an attack situation. We refer to this approach as Scan Analysis.

Scan Analysis operates in between the InFilter and NNS analysis. In case InFilter
suspects an incoming flow to be an attack it sends the flow for further analysis to the
Scan Analysis module. Here, counters for the destination IP address and destination port
are incremented. In case any counter thresholds are exceeded an attack is flagged.
Otherwise the flow is handed off to NNS analysis. Further details of Scan Analysis
implementation are discussed in Section 5.

4.2 NNS Search
We employ an efficient NNS (nearest neighbor search) algorithm to perform analysis on
traffic that has been flagged as anomalous by the InFilter mechanism. The NNS
algorithm operates on the concept of a flow which is more formally defined in section 5.
Informally, a flow is a subset of the packets being transmitted by a specific sender
destined for a specific receiver. A flow has certain observable characteristics such as a
packet count, a byte count across all packets in the flow and flow duration, among others.
NNS is essentially used to perform anomaly detection on incoming traffic flows by
comparing their characteristics with those of previously collected “training” flows.

We employ NNS algorithms from [KOR]. These algorithms operate in two
phases. There is an initial training phase during which an NNS data structure is
constructed from training data. We refer to the collection of flows in a data set as a
cluster. The second is a search phase during which each flow input to the algorithm is
compared against flows in the constructed data structure to find the nearest neighbor. In
case the flow is beyond a particular distance threshold from its nearest neighbor, it is
flagged as an attack. The training cluster for the initial phase can be created from
preexisting packet traces and the search data structure may be constructed off-line;
without requiring access to network traffic. The search phase operates on flows captured
on a live network. The algorithms in [KOR] specify the construction of a space efficient
NNS data structure whose size is polynomial in the size of the training data set. The
search algorithms run in time that is at most quadratic in the dimension of the flow
representation.

10

NNS data structure creation algorithmNNS data structure creation algorithm

Input: dimension d
Output: a data structure S
Instructions:
Build d substructures S1,..,Sd as follows:
structure Si consists of M1 structures Tij
structure Tij consists of a bunch of vectors and a table;
specifically,

M2 vectors uij,k
created using procedure CreateTestVector
on input b = 1/2i

a table eij (with 2M2 entries) created as follows:
for each input flow φ,

enter φ in entry eij,z
such that HD(trace(φ),z) < M3
and z is an M2-bit string
where

trace(φ)=(Test(uij,1,φ),..,Test(uij,M2,φ))
in {0,1}M2

Figure 6: NNS structure creation algorithm

The operation of the NNS algorithms requires that the set of characteristics of a

flow be represented as a single point in multi-dimensional space. Further, the algorithms
require that the dimensions of the flow be stored in their unary encodings. This is best
clarified by an example:

Let us assume that each flow φ under consideration has two observable
characteristics, a packet count Χ1 and a byte count Χ2. Further assume that Χ1 lies in the
range [0,5] while Χ2 lies in [0,10]. For a flow φi with Χ1

i=3 and Χ2
i=6 the unary

representation for φi would be <11100,1111110000> or a single bit string formed by
concatenating the bit strings for Χ1

i and Χ2
i:

111001111110000 ∈ {0,1}15

In general for a flow characteristic Χc that assumes values in the interval [a,b] we
can allocate dC bits to the unary representation for ΧC as follows:
i) Divide [a,b] into dC equal sized intervals
ii) Encode a value of ΧC that falls in the Ith interval by concatenating I 1’s with dC-I 0’s

Concatenating the individual unary representations for a flow with N
characteristics provides a unary d bit representation for the flow (where d = N*dC). The
choice of d for the unary representation of a flow determines the volume of information
that will be stored for the flow.

Figures 6 & 7 present the NNS data structure creation algorithm. The formal
proofs on the space efficiency of the algorithm are available in [KOR]. The data structure
creation algorithm makes use of probabilistic flow projections (traces) to enable efficient
comparisons during the search phase. M1, M2 and M3 are parameters to the algorithm
and can be used to control the level of search efficiency & accuracy at the cost of
increased data structure size. M2 is chosen to be a fraction of d and M3 is smaller than
M2. In our experiments (Section 6) we set d=720, M1=1, M2=12 and M3=3.

11

Procedure CreateTestVectorProcedure CreateTestVector
Input: parameter b in [0,1]
Output: vector in {0,1}d

Instructions:
randomly and independently choose a d-bit vector
u in {0,1}d

where for j=1,..,d:
uj = 0 with prob 1-b/2; = 1 with prob b/2
Return: u

Procedure TestProcedure Test
Input: u, v in {0,1}d

Output: bit
Instructions:
Return: inner product (u,v)

Procedure HDProcedure HD
Input: u, v in {0,1}M2

Output: Positive Integer value (< M2)
Instructions:
Return: Hamming distance between u & v

Figure 7: NNS structure creation support procedures

The NNS search algorithm as shown in Figure 8 is primarily a binary search

across the set of substructures created in the training phase. The search within a
substructure is done using the trace of the flow under consideration. The NNS algorithm
is an efficient nearest neighbor approximation algorithm that is parameterized by the
quantities M1, M2 and M3. The level of accuracy of the search depends on the values of
these quantities as inferred from [KOR].

NNS search algorithmNNS search algorithm
Input: Flow φ in {0,1}d, NNS data structure over a
cluster C of training flows
Output: Flow closest to φ in cluster C
Instructions:
binary search (to determine the minimum distance t in
[1,d] to a flow in C), where a step in the binary search
goes as follows:

let t be the current distance we are searching
randomly choose one of the M1 Tij’s of St

let (u{ij,1},..,u{ij,M2}) be the test vectors in Tij
compute

z=trace(φ)=(Test(u{ij,1},φ),..,Test(u{ij,M2},φ))
check the table entry eij,z
if eij,z contains a training flow then

the search is restricted to smaller values of t.
else

the search is restricted to larger values of t.
Return:
The flow contained in the last non-empty entry visited
during the binary search.

Figure 8: NNS search algorithm

We provide an informal description of the enhancement of the basic InFilter

approach using the NNS algorithms. The training phase for the NNS algorithms operates

12

independent of InFilter operation using training data as input. The search phase operates
in conjunction with the InFilter. An incoming flow is initially processed by the InFilter.
In case the flow is not flagged as an attack at this stage no further processing is required.
However, in case InFilter deems this flow to be a potential attack, the flow is passed on to
the NNS search algorithm which returns a nearest neighbor for the incoming flow. In
case the hamming distance between the nearest neighbor and the incoming flow is
beyond some predefined hamming distance threshold, the flow is flagged as a potential
attack. The expectation is that a substantial part of the InFilter false positives will be
captured by the NNS search algorithm. An overview of the architecture and operation of
Enhanced InFilter system will be presented in Section 5 below.

5 Implementation
We now present an overview of the Enhanced InFilter implementation. We first present
the individual components that together comprise the InFilter architecture. This is
followed by an overview of the operational aspects of the architecture.

5.1 Architectural components
Figure 9 shows the different components of the Enhanced InFilter system at a high-level,
and also demonstrates a sample deployment. NetFlow is often enabled on BRs in large IP
backbone networks. Flow-tools software modules are deployed at various points in the
target network. NetFlow data is transmitted to the flow-tools modules from the BRs.
Statistics generated by Flow-tools are then transferred to the analysis software module,
which analyzes the data and can provide notification in case abnormal behavior is
detected. The next few subsections describe the workings of the different system
components in more detail.

1

NetFlow

NetFlow

NetFlow

BR1

Peer AS1

Peer AS3 Peer AS4

Peer AS2

BR3
BR2

Target
Network

Flow-tools
softwareFlow-tools

software Analysis:
EIA +

NNS algos

Alert UI

Figure 9: InFilter Architecture

5.1.1 Data Generation: NetFlow
NetFlow is [NETF] is an industry-standard set of specifications for a router to export
statistical information about traffic that has passed through it. It is supported by most
Commercial-Off-The-Shelf (COTS) IP router vendors. A NetFlow enabled router will
periodically send datagrams to a pre-designated receiver node.

NetFlow datagrams contain information about flows passing through the network.
A flow is defined as a unidirectional sequence of packets between given source and
destination end points. NetFlow flows are highly granular. Figure 10 lists all the keys
used to identify a flow. Besides the Source and Destination IP addresses, other fields used
to identify a flow are: the IP protocol (e.g. TCP), the Source and Destination ports (if
applicable), the TOS byte (DSCP) and the Input Logical Interface (ifIndex) of the
constituent packets of the flow.

Information about a single flow is stored within a NetFlow record. A NetFlow
datagram contains multiple records each with information about a flow that has expired.
A flow is considered expired at a router when any of the following conditions is true:

• Flow has been idle for some specified amount of time
• Flow activity duration has exceeded pre-specified threshold
• Flow processing cache at router is close to full
• TCP connections terminate (FIN or RST)

Src IP Dst IP IP proto Src Port Dst Port TOS Byte Interface

Figure 10: NetFlow Keys

2

The contents of the NetFlow record vary with the version of NetFlow being

considered. Several versions of NetFlow are available with version 5 being the most
commonly deployed. In addition to the flow key fields (Figure 10), a NetFlow version 5
record contains additional information about a flow. This includes the number of
packets/bytes in the flow, the start and end times for the flow, the autonomous system
(AS) identifier for the source and destination of the flow and the masks used for routing
to them.

Only traffic entering a router’s network interface is considered for flow
accounting, outgoing traffic is not considered by NetFlow. NetFlow capability can be
enabled on a per interface basis and this provides a means to control the volume of
datagram exports from a router.

In the architecture shown in Figure 9, NetFlow would be enabled only on
interfaces that carry flows from Peer ASs at each of the BRs. The flow expiration
(idle/active) thresholds would be established based on typical traffic patterns observed in
the target network.

5.1.2 Data Collection: FlowTools
NetFlow datagrams may be processed either by developing customized applications or by
using existing NetFlow consumer applications. Cisco’s NetFlow FlowCollector [FLWC]
is an example of such a consumer application. Flow-tools [FLWT] is a freeware library
and collection of programs used to collect and generate reports from NetFlow data.

Flow-tools have a large suite of programs for operating on NetFlow output. Flow-
capture is a program used to receive and store NetFlow datagrams to disk storage. Flow-
report is used to generate reports from captured flow data. Other tools in the suite process
existing flow files into aggregates, filter flows based on some parameters or export
to/import from ASCII format.

The reports generated by flow-report contain statistical data about the input flows.
These include the bit and packet rates for the flow as well as its duration. The flow data
generated by flow-capture is stored in binary format to speed processing and save storage
space. Flow-report lists flow statistics in ASCII text format. It is possible to group
individual flows based on various fields and their combinations including (but not limited
to) ip-source address, ip-destination-address, input-interface, source-as etc. Grouping
flows using these fields results in statistics being computed for a group of flows rather
than a single one. Increasing the number of fields increases the granularity of the
computed statistics. Using all the key fields of a flow (as listed in Figure 10) results in the
generation of high granularity flow-specific statistics while grouping flows based on a
subset of key fields allows the generation of statistics aggregated across multiple flows.
The per-flow statistics employed as part of our experiments were

 byte count: the number of bytes across all packets in the flow
 packet count: the number of packets in the flow
 duration: the length of the flow in milliseconds
 bit rate: the bit rate for the flow
 packet rate: the packet rate for the flow

In the InFilter deployment of Figure 9, Flow-tool instances can operate at
workstations within the Target network. Load balancing and scaling are factors that will

3

determine the number of Flow-tool instances and their deployment locations within the
Target network.

5.1.3 Data Analysis Modules
The basic InFilter module and the NNS search algorithms form the core of the data
analysis modules. The basic InFilter module analyses an incoming flow by checking
whether the source IP address is present within the EIA set for the ingress Peer AS. The
NNS algorithms are implemented as outlined in section 4 above. The data analysis and
processing modules can operate in the following modes:
EIA set Initialization: The EIA set for each Peer AS is initialized by running the system
on a live network. The source IP address for an incoming flow is added to the EIA set for
the corresponding Peer AS. The EIA sets can be initialized using IP subnet masks. This
helps limit the size of an EIA set. Alternatively, the EIA sets may also be initialized by
hand.
Creation of Training Cluster: A set of training flows is created using either a training data
set or data from a live network. This cluster is referred to as the Normal cluster since it
contains all flows that represent non-attack traffic.
Cluster Partition: The Normal cluster is partitioned into protocol specific clusters based
on destination ports and IP protocols. In the experiments described in section 6 we
divided the Normal cluster into sub-clusters for http (tcp port 80), smtp (tcp port 25), ftp
(tcp port 21), dns (udp port 53), udp (all udp except dns), tcp (all tcp except those with
their own sub-clusters) and icmp. At the end of this process cluster specific hamming
distance thresholds are also established. It is expected that normal traffic flows to a
particular application will show less variation in terms of flow characteristics than traffic
flows to multiple applications.
NNS data structure creation: The NNS data structure creation algorithms are run once for
each sub-cluster of the Normal cluster. The output of this mode is the creation of a NNS
search data structure for each sub-cluster of the Normal cluster.
Online operation: This is the analysis mode of operation wherein an incoming flow is
first checked against the EIA set for the ingress Peer AS. If the EIA set analysis suggests
a possible anomaly, the flow is subjected to Scan Analysis. In case one of the Scan
Analysis counter thresholds is exceeded an attack is flagged; otherwise the flow is
assessed by the NNS analysis. NNS analysis is performed against the relevant sub-
cluster. For example, the nearest neighbor for an incoming http flow will be searched for
in the http sub-cluster. Additionally, the hamming distance between the flow and its
neighbor will be compared against the threshold computed for the http cluster in c)
above. In case the incoming http flow is at a distance greater than this threshold, it will be
flagged as a potential attack. When attack flows are detected, the Analysis module can
generate IDMEF [IDMEF] alerts which may be directed to any consumer application.

5.1.4 Alert User Interface
The Alert User Interface is an instance of an IDMEF consumer application. It is
responsible for receiving, parsing and displaying IDMEF alerts from the Analysis
module. The objective is to provide visual notification of attacks that are in their initial
stages or in progress.

4

The Enhanced InFilter system has the capability to provide early notification of
cyber attacks based on IP source address spoofing detection and efficient NNS search
analysis of IP traffic. While we provide a user interface to support visual depiction of
alerts, the core capability is the generation of attack notifications. These could easily be
used in a larger system that consumes such data in the standardized IDMEF format. Such
a large system can use the outputs of our system to initiate attack trace-back and response
capabilities.

5.2 Operational Phases
Analysis of Flow-tools data employs the anomaly detection approach. It proceeds in two
phases. An initial training phase is used to compute normal behavior for each of the Peer
ASs used for ingress to the target network. This would be followed by a normal
processing phase during which observed behavior would be compared against normal
behavior to identify anomalies.

5.2.1 Training phase
The EIA set for a Peer AS identifies valid source IP addresses for incoming flows via the
Peer AS. The EIA set at each Peer AS may be computed during the training phase using
either of the methods described in Sections 3.1 (traceroute) and 3.2 (BGP) above. A third
option would be to use flow data received from Flow-tools (5.1.3(a)). In this case, the
source IP address subnet prefixes of the flow would be used to compute the EIA set for
each Peer AS. Based on our empirical observations section 3, it is expected that EIA sets
will be fairly stable once computed. The training phase could be performed periodically
for each of the Peer ASs and would serve as a means to identify anomalous traffic flows
during the normal processing phase.

BR(NetFlow)

Flow-Tools

EIA &
Normal
Cluster
Generation

Cluster
Partition

NNS
creation

IP Traffic

NetFlow reports

IP Flow statistics

Peer AS EIA sets

Normal Cluster

Sub clusters

Per subcluster NNS
search structure

Figure 11: Training phase

The generation (5.1.3(b)) and partition (5.1.3(c)) of a normal cluster is also done

during the training phase. After this the construction of the NNS data structure (5.1.3(d))
completes the training phase. The constituent operations of the training phase are
illustrated in Figure 11.

5

5.2.2 Normal Processing phase
Consider the source IP address IP(φ) associated with an incoming flow φ. Let ASφ be the
Peer AS at which φ was observed. Let ASIP(φ) be the Peer AS whose EIA set contains
IP(φ). The following cases are possible.
a) ASIP(φ) is different from ASφ or ASIP(φ) does not exist

This is a possible attack situation since either φ was observed at a Peer AS different
from the one where it was expected or IP(φ) does not belong to the EIA set for any
AS. The flow characteristics of φ (as listed in section 5.1.2 above) are assessed using
Scan Analysis and NNS Search algorithms. If φ is assessed to be within normal
behavior range, it will not be considered an attack flow. IP(φ) will also be added to
the EIA set for AS(φ) if the number of flows with source IP(φ) received at AS(φ)
exceeds a predefined threshold. An attack situation will be flagged if φ is not within
normal behavior range. In this case an IDMEF notification will be transmitted to the
Alert UI.

b) ASIP(φ) is the same as ASφ
In this case φ is considered a legal flow and no alarms are raised. The operation of the
Normal processing phase is illustrated in Figure 12.

BR(NetFlow)

Flow-Tools

EIA Set
Analysis NNS Search

IP Traffic

NetFlow reports

IP Flow statistics

Suspect Flows

IDMEF
Alerts for
attack flows

Scan
Analysis

Detected attack

No
Attack
Detected

Detected attack

Figure 12: Normal processing phase

5.3 Demonstration of Attack Detection Capabilities
The CEWAS software was used to detect spoofed traffic generated by five different
attacks: Puke, Jolt, Teardrop, TFN2K, and Slammer. Table 1 describes their operation
and impact.

6

Attack Description Impact
Puke

Sends one ICMP “unreachable” packet to each target
Causes target to drop existing connections with spoofed source

Service availability
(spoofed source cannot
use service offered by
target, so both are
victims)

Teardrop Sends 2 fragmented packets within 40 msec with over-lapping
offsets to each target
Causes target to reboot or halt

System availability

Jolt Sends 175 fragmented over-sized packets in about 3 msec to
each target
Causes target to freeze

System availability

TFN2K Sends flood of packets to target
Causes target, or network links on path to target, to be
overwhelmed by the traffic load

System and network
availability

Slammer Sends single UDP packet with worm payload, which combines
scanning with infection
Causes target to suffer buffer overflow and be compromised
Self-propagates from compromised target to other vulnerable
hosts

System integrity

Table 1: Attacks used during CEWAS Demonstration

5.3.1 Dagreplay and Dagflow
Telcordia has developed two traffic-replay tools to aid with the demonstration and
experiment effort. The first, Dagreplay, created and transmitted an IP packet stream
based on previously captured traffic data-sets stored in DAG [Dagtools] format. The
second, Dagflow, created and transmitted standards-based Netflow version 5 records
based on previously captured traffic data-sets stored in DAG format.. Dagflow basically
emulated the generation of Netflow records by an IP router as a result of Dagreplay
traffic flowing through it. The advantage of Dagflow is thus that IP routers are not needed
during the experimentation, since the Dagflow generated NetFlow records may be
directly fed to the Enhanced InFilter software. Also, experiment duration can be
significantly reduced since replay of the previously captured data-sets is faster when
using Dagflow. The previously captured training traffic data-sets used by Dagflow were
obtained from public-accessible sources such as [CAIDA] and [NLANR]. Dagflow can
replace the source IP addresses in the generated NetFlow records, thus providing
capability for controlled spoofing. Both Dagflow and Dagreplay could replace the source
IP addresses in the IP headers of packets they regenerated, thus providing capability for
controlled spoofing. . For example, it is possible to configure Dagflow to generate
NetFlow records with 25% of the source IP addresses in the 192.4/16 subnet, 25% in the
214.96/16 subnet and the remaining 50% in the 145.25/16 subnet. Dagreplay could be
provided with a parameter to control the rate of traffic replay. Dagflow could be
configured to send NetFlow records to a specific destination port.

 7

Figure 13: CEWAS Demonstration Testbed

5.3.2 Demonstration Scenarios
Figure 13 illustrates the test-bed used in the demonstration. It comprised of three hosts,
each running one of the attacks tools (Puke, Jolt, or Teardrop) or TFN2K, depending on
the scenario. The three scenarios were as follows.

 EIA set generation: Multiple Dagreplay instances were initiated on each of the
hosts, each emulating normal traffic flow. Each Dagreplay instances was assigned
one address block from a set of non-overlapping and unique address blocks. This
ensured that each Dagreplay was emulating normal traffic from a specific and
unique part of the Internet into the target network. The total volume of traffic thus
generated by all the Dagreplays was 16.5 Mbps. The CEWAS software was used in
learning mode to create the EIA sets based on Netflow data received from the
routers. The EIA sets were displayed on the CEWAS GUI, and matched the address
blocks assigned to the BRs. This demonstration showed that the CEWAS software
could dynamically create EIA sets for the BRs in real-time from live traffic.

 Detection of spoofed stealthy attacks: Dagreplay was used to generate normal
traffic as in previous scenario. Puke, Jolt, and Teardrop were initiated on the hosts,
targeting a host running a COTS IDS (Snort). Snort was used without the signatures
for Puke and Jolt, hence failed to detect those attacks. CEWAS software used in
normal mode could successfully detect the spoofed traffic generated by all the 3

BR: Border Router
Normal Traffic
Attack Traffic
NetFlow Data

BR1
(NetFlow
Enabled)

BR2
(NetFlow
Enabled)

BR3
(NetFlow
Enabled)

Flow-tools
software

EIA set &
Clustering &
Nearest Neig.

software
CEWAS

GUI

Source 2

Source 3

CEWAS Node

Attack Target
running Snort

Normal Traffic &
Puke

(Source2)

Normal Traffic &
Teardrop
(Source3)

Normal Traffic &
Jolt

(Source1)

BR: Border Router
Normal Traffic
Attack Traffic
NetFlow Data

BR1
(NetFlow
Enabled)

BR2
(NetFlow
Enabled)

BR3
(NetFlow
Enabled)

Flow-tools
software

EIA set &
Clustering &
Nearest Neig.

software
CEWAS

GUI

Flow-tools
software

EIA set &
Clustering &
Nearest Neig.

software
CEWAS

GUI

Source 2

Source 3

CEWAS Node

Attack Target
running Snort
Attack Target
running Snort

Normal Traffic &
Puke

(Source2)

Normal Traffic &
Puke

(Source2)

Normal Traffic &
Teardrop
(Source3)

Normal Traffic &
Teardrop
(Source3)

Normal Traffic &
Jolt

(Source1)

Normal Traffic &
Jolt

(Source1)

 8

attack tools. Information about the detected attacks was displayed on the CEWAS
GUI.

 Detection of spoofed traffic-based DDoS attack: Dagreplay was used to generate
normal traffic as in previous scenarios. TFN2K, a DDoS attack tool, was initiated
on Source1, targeting a host running a COTS IDS (Snort). Snort was used without
the signatures for TFN2K, hence failed to detect the attack. CEWAS software used
in normal mode could successfully detect the spoofed DDoS traffic. Information
about the detected attack was displayed on the CEWAS GUI.

6 Telcordia Experimental Evaluation (Phase I)
The goal of the experimental evaluation in Phase I was to quantify the effectiveness,
efficiency and overhead of the Enhanced InFilter system in detecting cyber-attacks using
spoofed packets. Our objective was to perform this quantification with attack traffic
being present in the network along with non-attack (“normal”) traffic.

6.1 Experimental Setup
The experimentation is better facilitated by having separate “normal” and “attack” traffic
sources, and using them in specific proportions for better control of the evaluation. Figure
14 shows the testbed setup for the experimental evaluation. The end-hosts on the left
were running two instances of Dagflow each. 5 end-hosts were used for the experiment,
for a total of 10 Dagflow sources of “normal” traffic. “Normal” traffic was generated
from IP traffic traces captured from [CAIDA] and [NLANR]. Since Dagflow can
generate Netflow reports directly from the traffic traces, the end-hosts running Dagflow
can send the traffic directly to the Enhanced InFilter software without requiring
emulation of an ISP network topology. Each Dagflow instance thus emulates a BR, in
that it generates the NetFlow records that would have been generated by the BR in an ISP
network. The destination UDP port used to transmit NetFlow records is configured to a
different value for each Dagflow instance. This allows the Enhanced InFilter software to
multiplex the incoming NetFlow records from multiple Dagflow instances. The
experimental testbed in Figure 13 thus emulates the topology of an ISP with 10 peer ASs
and 10 BRs, and is illustrated in Figure 15.

 9

S1, S2

S9, S10

S3, S4

S7, S8

S5, S6

Dagflow sources

Enhanced InFilter
Software

Figure 14: CEWAS experimental testbed

Each Dagflow instance was allocated a set of unicast IP address blocks, which

were used by the Dagflow instance as source IP addresses for its generated traffic. There
were no overlaps between the sets allocated to different Dagflow instances. The address
blocks were chosen from the entire publicly-routable IP unicast address space, which
represents the entire Internet. This distribution emulated the effect of traffic from distinct
parts of the Internet transiting a specific BR for entering the target network. To capture
the effect of route instability driven change in the BR used by 2% of the incoming traffic,
the Dagflow instances used IP addresses from their allocated blocks for 98% of their
traffic generation. The remaining 2% traffic received IP addresses from another Dagflow
instance’s address block set. This “route instability” emulation was managed by using
scripts to carefully select the actual address blocks used during the experiments.

10

BR1

Peer AS1

Peer AS10

BR10

Target ISP Network

BR2

Peer AS2

BR3

Peer AS3

BR4

Peer AS4

BR5

Peer AS5

Peer AS6

BR6

Peer AS7

BR7

Peer AS8

BR8

Peer AS9

BR9

Figure 15: ISP topology emulated by experimental testbed

003/8 004/8 006/8 008/8 009/8 011/8 012/8 013/8 014/8 015/8

016/8 017/8 018/8 019/8 020/8 021/8 022/8 024/8 025/8 026/8

028/8 029/8 030/8 032/8 033/8 034/8 035/8 038/8 040/8 043/8

044/8 045/8 046/8 047/8 048/8 051/8 052/8 053/8 054/8 055/8

056/8 057/8 058/8 059/8 060/8 061/8 062/8 063/8 064/8 065/8

066/8 067/8 068/8 069/8 070/8 071/8 072/8 080/8 081/8 082/8

083/8 084/8 085/8 086/8 087/8 088/8 128/8 129/8 130/8 131/8

132/8 133/8 134/8 135/8 136/8 137/8 138/8 139/8 140/8 141/8

142/8 143/8 144/8 145/8 146/8 147/8 148/8 149/8 150/8 151/8

152/8 153/8 154/8 155/8 156/8 157/8 158/8 159/8 160/8 161/8

162/8 163/8 164/8 165/8 166/8 167/8 168/8 169/8 170/8 171/8

172/8 188/8 191/8 192/8 193/8 194/8 195/8 196/8 198/8 199/8

200/8 201/8 202/8 203/8 204/8 205/8 206/8 207/8 208/8 209/8

210/8 211/8 212/8 213/8 214/8 215/8 216/8 217/8 218/8 219/8

220/8 221/8 222/8

Table 2: Publicly-routable, allocated IP unicast address blocks

11

The address blocks in Table 2 are from http://www.iana.org/assignments/ipv4-

address-space, representing the 143 publicly-routable, allocated, unicast address blocks as
of 28th October, 2004. The /8 implies that the leftmost octet represents the network part
of the address. E.g. the address block 214/8 represents all IP addresses that correspond to
214.X.Y.Z, where X, Y and Z can take any values between 0 and 255. Each address
block is further broken down in to 8 sub-blocks, with each sub-block representing a set of
addresses with a /11 network mask. E.g. the address block 214/8 would be broken into
the following 8 blocks as follows.
a) 214.00000000.0.0/11 = 214.0/11
b) 214.00100000.0.0/11 = 214.32/11
c) 214.01000000.0.0/11 = 214.64/11
d) 214.01100000.0.0/11 = 214.96/11
e) 214.10000000.0.0/11 = 214.128/11
f) 214.10100000.0.0/11 = 214.160/11
g) 214.11000000.0.0/11 = 214.192/11
h) 214.11100000.0.0/11 = 214.224/11

The 2nd octet from left above is represented in binary. The /11 implies that the 3

leftmost bits of the 2nd octet represent the network part of the address. E.g. the sub-block
214.32/11 represents all IP addresses that correspond to 214.32.X.Y thru 214.63.X.Y,
where X and Y can take values between 0 and 255. Applying the same technique to the
other 142 blocks gave a total of 143*8=1144 sub-blocks, of which the first 1000 were
used for our experiments and the remaining 144 were ignored. So the 1000 address
blocks used in our experiments are obtained by breaking blocks 3/8 thru 204/8 from the
table above into 8 sub-blocks each as demonstrated above, and ignoring the remaining
address blocks 205/8 onwards. The notation used to represent each of the 1000 sub-
blocks is to use a numerical count for an address block, and use a letter for each of its
sub-blocks. Hence 3.0/11 would be represented by 1a, 3.32/11 by 1b, 4.64/11 by 2c,
9.0/11 by 5a, and so on, until 204.224/11 being represented by 125h.

 Allocation 1 Allocation 2

Dagflow Source Normal Set Change Set Normal Set Change Set
S1 1a-13b 113d-125g 1a-13b 100h-113c
S2 13e-25f 13c-125h 13e-25f 113d-125g
S3 26a-38b 13d-25g 26a-38b 13c-125h
S4 38e-50f 25h-38c 38e-50f 13d-25g
S5 51a-63b 38d-50g 51a-63b 25h-38c
S6 63e-75f 50h-63c 63e-75f 38d-50g
S7 76a-88b 63d-75g 76a-88b 50h-63c
S8 88e-100f 75h-88c 88e-100f 63d-75g
S9 101a-113b 88d-100g 101a-113b 75h-88c
S10 113e-125f 100h-113c 113e-125f 88d-100g

Table 3: Allocation of address blocks to Dagflow sources with 2% emulated

route changes

12

Using this notation, Dagflow source 1 would be allocated address sub-blocks 1a
thru 13d. For the purpose of emulating “route instability”, sub-blocks 1a thru 13b would
be used by Dagflow source 1, while 13c and 13d would be used by other Dagflow
sources. Similarly, Dagflow source 2 would be allocated address sub-blocks 13e thru
25h. Again, for emulating routing instability sub-blocks 13e thru 25f would be used by
Dagflow source 2, and sub-blocks 25g and 25h by other Dagflow sources. Table 3 shows
two sample allocations of address sub-blocks to Dagflow sources with 2% route changes.
Each allocation is used by the experiment script for a certain period, after which, the next
allocation is used.

6.1.1 Attack traffic source
Our experiments required the ability to control the volume of “attack” traffic relative to
“normal” traffic. Various publicly available traffic traces were found to contain a mix of
attack and non-attack traffic, which was not suitable for our purposes. Hence we
generated and captured a large quantity of traffic traces in our test-bed, using publicly-
available attack tools such as Nessus and nmap. We ensured that both stealthy and traffic-
intensive attacks were covered, including those that impacted availability and resulted in
end-host compromise. 12 unique attacks were used, with each attack being used multiple
times depending on volume of attacks needed. The attacks were of different types,
targeting http, ftp, smtp, dns, and also included a worm (slammer) and a ddos attack
(tfn2k). Some impacted service at the end-host, while some could be used to compromise
an end-host.

These attack traffic traces were captured in TCPDUMP format, and converted to
DAG format. Dagflow could then use the converted traces for launching controlled
attacks during our experimentation.

6.2 Testbed Experiments
The experiments were designed to quantify the ability of Enhanced InFilter software to
detect various kinds of attacks (stealthy and voluminous), the rate of false positives, the
sensitivity to different route instability conditions and sensitivity to location of attack
sources. They were also designed to test the performance of the software under high load
conditions.

Three sets of experiments were performed. The first set was designed to test the
basic spoofed attack detection capability of the Enhanced InFilter software. The second
tested the spoofed attack detection capability in a high load environment. The final set of
experiments detected spoofed attacks in the presence of simulated route changes. The
EIA set configuration for all the emulated Peer ASs was preloaded into the test
environment. Each Peer AS was assigned 100 address sub-blocks in its EIA set as shown
in Table 4.

13

Peer AS EIA set
Peer AS1 1a-13d
Peer AS2 13e-25h
Peer AS3 26a-38d
Peer AS4 38e-50h
Peer AS5 51a-63d
Peer AS6 63e-75h
Peer AS7 76a-88d
Peer AS8 88e-100h
Peer AS9 101a-113d
Peer AS10 113e-125h

Table 4: EIA set allocations

A training traffic cluster was created by using a single Dagflow instance

generating NetFlow records for a “normal” traffic trace. The cluster was partitioned into
sub-clusters based on well-known services (HTTP, FTP, SMTP, DNS), transport
protocols (TCP, UDP), and ICMP as described in a previous section. The NNS search
data structures were constructed for each sub-cluster prior to the experiment runs. The
experiments described in this section were then used to evaluate the Normal processing
phase of the Enhanced InFilter software.

In each of the experiments, the nature of the detection performed by the system
was varied. For this purpose, two software configurations were used. In BI (Basic
InFilter) configuration, the software assessed incoming traffic using EIA set analysis
alone. In the EI (Enhanced InFilter) configuration, the software performed Scan Analysis
and NNS analysis on traffic identified as suspicious by EIA set analysis as described in
section 5 above. In each of the experiments, the number of attacks detected and the
volume of normal traffic tagged as suspicious (false positives) by the software was
tracked. Also tracked was the latency between attack initiation and detection in case of
successful attacks. Each data point was obtained by averaging 5 runs of the experiment
with the same set of parameters.

6.2.1 Spoofed attacks
The goal of the first set of experiments was to evaluate the accuracy of the Enhanced
InFilter software in identifying spoofed attack traffic. 10 Dagflow instance (S1-S10) were
used for generating NetFlow reports using normal traffic traces. The source addresses for
NetFlow reports generated by these instances were identical to the EIA sets for the
corresponding emulated Peer AS, that is, no routing changes were emulated in this set of
experiments. Thus each “normal” Dagflow instance used 100 contiguous source IP
address blocks. Each normal Dagflow instance sent NetFlow reports to a distinct UDP
port.

Separate Dagflow instances were used to generate NetFlow records corresponding
to each attack trace. All the “attack” Dagflows sent NetFlow reports to the same UDP
port as Dagflow instance S1 emulating attacks entering the Target Network via Peer AS1.
Furthermore, all the attack Dagflow instances were launched on the same host as
Dagflow instance S1. The source addresses for the attack traffic were chosen from the

14

900 address blocks corresponding to the EIA sets for Peer AS2 – Peer AS10. This
emulated spoofed attacks entering the Target ISP Network via a single Peer AS.

The amount of attack traffic was varied to test the sensitivity of the Enhanced
InFilter software. The attack traffic was generated at 2%, 4% and 8% volume relative to
the total normal traffic volume at Peer AS1. This experiment was carried out for software
configuration EI.

6.2.2 Stress testing with spoofed attacks
In the second set of experiments, the set of attack Dagflow instances described in section
above was replicated for each of the emulated Peer ASs (AS1-AS10). Each set of attack
Dagflow instances used a port corresponding to a Dagflow instance generating normal
traffic, which emulated the effect of attack traffic transiting the same Peer AS as used by
normal traffic. The same set of attack traffic traces was used, and each set of attack
Dagflows emulated spoofing by using an address block corresponding to EIA sets for
Peer ASs other than the one being emulated by the Dagflow instance. Thus the attack
Dagflows for Peer AS1 chose source addresses from the 900 blocks corresponding to EIA
sets for Peer AS2-Peer AS10, those for Peer AS2 chose source addresses from the 900
blocks corresponding to EIA sets for Peer AS1 and Peer AS3-Peer AS10 and so on. This
emulated the effect of having a high attack load at the Target ISP network with attack
flows entering the network via every Peer AS.

The amount of attack traffic was varied for every Peer AS instance. It was
generated at 2%, 4% and 8% volume relative to the total normal traffic volume at the
corresponding Peer AS. This experiment was carried out for software configuration EI.

6.2.3 Spoofed attacks with route changes
The third set of experiments evaluates the sensitivity of the software to different rates of
“route instability.” A single set of attack Dagflow instances was used as described in
previous section.1. All the attack Dagflow instances emulated traffic entering via Peer
AS1.

The “route instability” for normal traffic was varied at 1%, 2%, 4%, and 8%. Each
of the two allocations shown in Table 2 corresponds to a 2% level of route instability. For
each level of route instability four such allocations were constructed. 10 normal Dagflow
instances were used. Each normal Dagflow instance used a particular allocation (starting
with the first) for sometime before moving on to the next allocation. All the normal
Dagflow instances were made to transition from one allocation to the next
simultaneously.

As in previous section, the volume of attack traffic was varied to test the
sensitivity of the Enhanced InFilter software. The attack traffic was generated at 2%, 4%
and 8% volume relative to the total normal traffic volume at Peer AS1. This experiment
was carried out for software configurations BI & EI.

6.3 Testbed Experiment Results
Figures 16 and 17 show the effect of increased attack traffic volume for the experiments
described in sections 6.2.1 and 6.2.2. For the case of a single set of attack instances,
varying the attack volume did not have much of an impact on either the detection rate or
the false positive rate. In all cases about 83% of launched attacks were detected with less

15

than 1% false positives being generated by the Enhanced InFilter software. However, in a
situation with high attack load, as described in section 6.2.3, the detection rate was seen
to drop from about 83% to about 70%. The false positive rate, on the other hand, showed
the opposite trend with a rise from about 1.25% to almost 4%.

40.00

60.00

80.00

100.00

2 4 8

Attack volume (%age of non-attack traffic at a BR)

single attack set
10 attack sets

Figure 16: Attack detection rate

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

2 4 8

Attack volume (%age of non-attack traffic at a BR)

single attack set
10 attack sets

Figure 17: False positive rate

16

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Route change %age

2% attacks
4% attacks
8% attacks

Figure 18: False positive rate with route change – Basic InFilter

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8

Route change %age

2% attacks
4% attacks
8% attacks

Figure 19: False positive rate with route change – Enhanced InFilter

Figures 18 and 19 show the impact of route changes for the experiments described

in 6.2.3. As expected, the false positive rate rises as the volume of route changes
increases for both the Basic and Enhanced InFilter cases. In all cases the detection rate
stays flat at almost 100% for the Basic InFilter and at about 80% for the Enhanced
InFilter. However, the false positive rate is somewhat higher for the Basic InFilter case as
discussed below.

Figure 20 contrasts the performance of the Enhanced InFilter with the Basic
InFilter for the case with 8% attack traffic volume. For the case with 8% route changes,
the Enhanced InFilter shows a false positive rate of a little over 5.25% as opposed to an
almost 7.4% false positive rate for the Basic InFilter. Thus, the Enhanced InFilter reduces
the false positive rate by almost 30%.

17

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Route change %age

Basic InFilter
Enhanced InFilter

Figure 20: False positive rate at 8% attack volume for Basic & Enhanced

InFilter versions

The Enhanced InFilter software could detect about 80% of the attacks for almost
all the cases except for some of the stress test experiments. The false positive rate was
usually around 2% only going up to about 5% in some of the more pathological cases.
Processing latencies for the Basic InFilter were usually around 0.5 msec on average. For
the Enhanced InFilter, these latencies varied between 2 and 6 msecs. The additional
latency is attributable to the NNS search overhead.

7 Experimentation on DETER testbed (Phase II)
The DHS and NSF funded DETER testbed was used for large-scale experimentation of
CEWAS during Phase II. DETER offers the ability to configure a large number of UNIX-
based hosts (about 100 at time of experimentation) in to arbitrary ISP-like topologies
with routing protocols. Real-attacks can be safely launched within DETER since it is
well-isolated from the other networks.

18

Figure 21: DETER Schematic

 The DETER testbed consists of a set of experimental nodes, interconnected
through a programmable “patch panel”, which can dynamically establish a distinct
network topology for each experiment. In the DETER testbed, each node is a PC machine
with four Ethernet interfaces to the programmable patch panel on a VLAN switch. A user
can specify an experiment topology using an NS [NS2] like specification language. The
control software, parses the specification, allocates a set of free nodes, sets up the
interconnections and then allows a particular experiment to proceed. The control software
automatically loads kernels and other software into the nodes and configures the VLAN
switch, firewalls, NFS mount points and other system parameters to isolate it from any
other experiments that may be running simultaneously. Control of the PCs is then turned
over to the experimenter.

During the experiment, the user can employ the control network to monitor the
nodes, to reload crashed nodes, or to swap out the entire experiment, using a web GUI on
the Boss server. The user can also power-cycle a node if required. The user has access to
nodes through their serial consoles, and through their control ports via the User server.
On the other hand, a running experiment in DETER will not have direct IP connectivity
to the Internet outside their testbed. It is also important to note that experimenters are not
able to change the configuration of the VLAN switch while the experiment runs. More
details on the testbed are available in [DETER].

7.1 Configuring DETER for CEWAS Experimentation
Figure 22 illustrates the various steps involved in configuring DETER for CEWAS
experimentation. CEWAS experiment configuration files along with CEWAS binaries
and CEWAS experiment control scripts were initially uploaded on the “Users” machine

19

on DETER. Telcordia developed a tool to generate configuration files for some of the
CEWAS experiments. These configuration files determined what traffic flows were
generated from experiment nodes and also the source address ranges used by the flows.

Figure 22: Configuring DETER for CEWAS Experimentation

The experiment specification file for each CEWAS experiment contained
information about the network topology, the Operating Systems to be loaded onto each
node used by the experiment as well as any software libraries required by CEWAS or its
support tools. The experiment topology was instantiated by uploading the NS
specification to the Boss server (www.isi.deterlab.net) using its web interface.

7.2 Overview of Experimentation
The experiments on DETER testbed can be classified in to three categories. The first
involved validation of the earlier Phase1 Telcordia testbed results on DETER. This
required gaining familiarity with DETER, and then porting of the Telcordia testbed
experiments to DETER. The second category of experiments involved testing the
scalability of DETER by increasing total number of emulated BRs and traffic volume.
The final third category of experiments involved emulation of NIPRNet on DETER. This
required creation of network topology that emulated portions of NIPRNet, with multiple
physical nodes and multi-hop paths from source to destination. Route changes were
emulated through dynamic routing and link failures. This final category emulated the use
of CEWAS in a production environment.
 In our experimentation with EIA set changes in the public Internet, as
documented in [INFILTER], we have observed between 0.4 and 1.6% of EIA set entries
change values on the average. The maximum observed change of this nature was 5%. We
can extrapolate from this that given a k% change in the EIA set during a given interval,
the volume of traffic that will change ingress routers, for a given target network, will be
at the most k% of the observed traffic (assuming traffic is evenly distributed across all
ingress routers). In our DETER validation tests, as well as in the CEWAS scale tests, we

20

vary the route changes far beyond the average observed levels to as high as 8% of
observed traffic. The NIPRNet Emulation experiments evaluate CEWAS in a more
realistic environment with route changes being induced as a result of link failures rather
than by artificial manipulation of source IP addresses as is the case for the DETER
validation and CEWAS scale testing.

7.3 DETER Validation Experiments
The CEWAS detection rate is comparable to prior experimentation and doesn’t drop
much with increased attack volume, it remains at around 80%. Detection rate remains
around 80% even with route changes (2-8%), with a single attack source. The False
positive rate is quite similar to prior experimentation as well. The false positives for
single attack source are less than those for ten attack sources, especially for higher attack
traffic volume. An increase in the route change fraction results in an increase in false
positives as well. The false positive rates do not exceed 5% except for one pathological
case with 8% attack traffic volume and 8% route changes where it goes up to about 5.5%.

It took about a week to gain working knowledge of DETER. The control network
could be used for control traffic, which reduced interference with data traffic.
Performance varied based on type of nodes assigned, and it was possible to select
hardware assigned to a node. It was not easy to run everything as root, due to the shared
infrastructure and various user access issues.

7.4 DETER Scalability Experiments
Two sets of tests were conducted to understand the scalability of DETER nodes and
network. The first tested a DETER node’s limitations in terms of the number of Dagflow
instances it could support. The second assessed the scalability of CEWAS in terms of
traffic volume.

7.4.1 Node Limitation Experiments
In the first set of experiments, the number of border routers (BRs) emulated per physical
node was varied. The number of emulated BRs was set to 8. The number of physical
Dagflow source nodes varied as 2, 4 & 8 and the route change rate was set to 8%. The
Attack volume was set to 8% of normal traffic and attacks were generated at all BRs.
This set of experiments was more aggressive relative to phase 1 experiments where only
a single attack traffic source was used along with route change emulations. In addition,
the highest volume of attack traffic & route changes was used in this set of experiments.
The source IP address space, 1000 /11 blocks, was distributed evenly among all emulated
BRs. For each configuration the experiment was conducted 3-4 times. In each run there
were a few hundred instances of “normal” and “attack” Dagflow instances. Our Phase 1
experiments remotely invoked all Dagflows from a central node that was also used for
launching other components. This was feasible in Phase 1 because of the smaller number
of Dagflow instances required. In the DETER experiments, we launched Dagflow
instances locally to avoid remote invocation of a large number of processes. Each of the
nodes used the same configuration file that provided parameters for these Dagflow
instances. Only instances specifying the local node were launched. For each run there
was a different configuration file. These files included the following parameters for the
Dagflow instances: the physical node identifier for the instance, the node running flow-

21

tools, the TOS byte used in attack identification and source address blocks used. These
parameters were specified for each of the Dagflow instances. There were a few hundred
Dagflow instances brought up for each run.

Figure 23: Scalability Tests: DETER Node Limitations

We developed a configuration generator script to automatically generate the

various configuration files needed. This was needed for several reasons: firstly and most
importantly, to remove human errors in specifying parameters for so many Dagflow
instances. Also, calculating the address blocks and the TOS bytes to be used for each
instance manually was daunting. The configuration generator was an absolute necessity
for later experiments involving 40-80 nodes. The configuration generator required the
specification of the node identifiers and the number of sources in a configuration to
generate the configuration files.

We discovered that when the temporary files created by the experiment were on
shared disks, the operations did not complete in a deterministic timely manner. Therefore,
we had to copy the scripts used to launch the different parts of the experiments to a local
disk and create all the temporary files and result files on the local disk. At the end of the
experiment we copied the results to their permanent location on the shared disk.

22

Figure 24: Results of DETER Node Limitations Experiments

We observed a 30% drop in detection rates & total observed flows going from the
topology with 2BRs/node to the one with 4BRs/node. We repeated the experiments a few
times and found some minor variations in the results based on the type of hardware
allocated to us by DETER. Based on these results we decided to limit ourselves to
emulating 2BRs/node for the remainder of the Dagflow based scale tests.

7.4.2 Traffic Volume Scalability Experiments
The objective of these experiments was to test the scalability of CEWAS in terms of
traffic volume. The number of emulated BRs was varied as 10, 20 & 40. The number of
physical Dagflow source nodes were varied as 5, 10 & 20 (each physical node emulates 2
BRs). Route changes at each BR were varied as 1, 2, 4 & 8% while the attack volume per
BR was varied as 4 & 8%. As in the “Node Limitation” case, attacks were generated at
all BRs, this being more aggressive than Phase1 tests incorporating route changes in
which attacks were generated at a single BR. In all cases 1000 /11 address blocks were
distributed among EIA sets of all BRs.

23

Figure 25: Scalability Experiments: DETER Traffic Volume

 In these experiments we used the same set of scripts, but with a larger number of
nodes and hence with a larger number of configuration files. The configuration file
generator was used to generate the files. The number of “normal” and “attack” traffic
generators was an order of magnitude higher. E.g. in the 40 BR case with 8 % route
changes and 8% attack volume, there were about 2000 Dagflow instances used in each
run.
 As shown in Figure 26, the detection rate drops sharply for 40 BRs irrespective of
route change fraction. For cases with 10 & 20 BRs the detection rate is about 80%. The
false positive rate was seen to be lower for lower route change fractions, which is
expected behavior. It was seen to be between 1-5% typically, with values of 7-8% for
high route change volumes. This set of scale tests essentially pushed CEWAS to its
limits. A better detection rate would be observed if the CEWAS infrastructure were set
up to do distributed analysis of the observed data. While the current centralized approach
deals with most typical network scenarios, it is expected that distributed analysis would
be able to handle extreme cases with a large number of BRs.

7.5 NIPRNet Emulation Experiments
The goal of the NIPRNet emulation experiments was to examine CEWAS performance in
a large network topology that emulates portions of NIPRNet. This involved generating
actual network traffic (as opposed to synthesized NetFlow records), using routing
protocols to generate route changes in response to randomly failing network links, and
randomly generating attack traffic in the network. The false positive rates under the
influence of route changes, and the attack detection rate under the influence of randomly
generated attacks, were the metrics of interest.

24

Figure 26: Results of DETER Traffic Volume Experiments

7.5.1 NIPRNet Topology and Emulated Network
NIPRNet topology [DISN] is similar to that of a large Tier1 ISP and therefore matches
CEWAS’ target application area. It is managed by DISA and spread across 3 regions:
CONUS (continental US), Pacific, Europe. Each region employs multiple IAPs (Internet
Access Points aka PoPs) and there are around 20 IAPs across all regions. The bulk of
traffic, within NIPRNet, is Internet related. The CONUS portion of NIPRNet has 11
IAPS from Qwest and 2 IAPs from Level3 which act as ISPs for NIPRNet. NIPRNet
employs 1452 full time user connections, thousands of LANs and has potentially over a
million users [DISN2]. The bulk of NIPRNet traffic is Internet related and therefore
analysis of traffic entering NIPRNet via the IAPs, as done by CEWAS, would be very
useful from the perspective of securing NIPRNet as a whole.

In our experimentation, we approximated a portion of CONUS topology using

DETER. Our aim was to create a multi-hop multi-link topology with dynamic routing,
randomized attack traffic generation, non-attack traffic generation and randomized link
failure generation capabilities. The network topology illustrated in Figure 28 emulates a
portion of NIPRNet and was created using DETER. The CONUS segment incorporated 8
Border Routers (N1-N8). Network sections QIA, QIB, …, QIE emulate Qwest IAPs that
provide Internet access to NIPRNet, QCA, QCB and QCC emulate a portion of the Qwest
core network and SNA, SNB, SNC and SND emulate source networks generating traffic
destined for NIPRNet. Nodes labeled S1-S8 served as traffic sources generating both

25

attack and non-attack traffic targeting NIPRNet. The topology consisted of a total of 54
routers and 1 node running the CEWAS software. 74 links were created between the
nodes in the topology. We made use of OSPF as the dynamic routing protocol in the
network. Each of the border routers (N1-N8) generated NetFlow records corresponding to
traffic entering NIPRNet and sent them to CEWAS for analysis.

Figure 27: NIPRNet CONUS Topology

7.5.2 Software Tools Used
Dagreplay was used to replay normal and attack traffic from dag [DAG] format input
trace file. This generated actual packet traffic as opposed to Dagflow (which generates
NetFlow records). Dagreplay was used on all source nodes (S1-S8). Fprobe [FPROBE] is
a Linux-based NetFlow generation tool available under GNU GPL that listens on network
interfaces for incoming traffic. It was used on all Border routers (N1-N8) to generate
NetFlow v5 records as per Cisco specifications. Gated [GATED] is dynamic routing
software for OSPF, BGP, and other routing protocols. Our initial objective was to setup
each Network section in our emulated topology as a BGP autonomous system. We
attempted to use the complete gated available on DETER, but were unable to resolve
issues with BGP routing in our available time frame. Hence, we ran gated in OSPF mode
only to make progress on the experimentation using dynamic routing.

7.5.3 Initialization of EIA Sets
The objective of this experiment was to create EIA sets that may be used as input to
succeeding experiments. The topology is created on DETER, all links were activated, and
OSPF established routes. CEWAS software was started in training mode. Each source Si

26

generated normal traffic using Dagreplay. Each normal Dagreplay instance selected its
source IP addresses from a set SIPi which was unique for Si. CEWAS computed EIA sets
for NIPRNet emulated topology. The results were collected with Dagflow instances
running for 10, 15 and 30 minutes. At this point no link failures were introduced.

Figure 28: Emulation of NIPRNet on DETER

In this experiment we had many problems with the hardware and configuration of

the testbed topology itself [see section 5]. Therefore, we developed a tool to test all or
some of the links in the network. This uses as input a topology map file that is created by
DETER at the time the topology is swapped in. This tool was used many times during
this phase of the work.
 The EIA sets essentially indicate the sources (Si’s) from which traffic was
observed at a specific border router. Each SIPi in the table corresponds to a specific
source IP address block selected for the traffic source Si. Experiment 1 was repeated
several times to ensure that the same EIA set was generated every time. These EIA sets
were input to experiments 2 & 3 prior to introducing route changes and attack traffic.
Certain Border routers (N2, N3 & N5) did not see any traffic and hence had empty EIA
sets for this set of experiments. The EIA sets for these have not been shown.

27

Figure 29: Results of EIA Set Initialization

7.5.4 Impact of Link Failures
The goal of these experiments was to measure the number of false positives caused by
route changes induced by link failures. The EIA set computed in previous experiment
was input to this experiment. EIA sets changed during the course of the experimentation
as route changes stabilized.
 [LINKFAILS] presents the results of analysis of link failure data on the Sprint IP
backbone over a 4 month period. About 80 backbone links were considered in this work.
The majority of link failures were seen to last for less than 20 minutes and about 10%
lasted longer than 20 minutes. Three of the links were seen to be highly failure prone and
accounted for almost 25% of all observed failures. The duration between link failures in
[LINKFAILS] was seen to vary greatly. For the majority of links (about 70), this was
seen to exceed 1 day. Consider the expression for system availability (A):
 A = [TTF/(TTR + TTF)]*100
where TTF: Time to Failure, TTR: Time to Recovery.
In this case, the failure probability = (100-A)

Assuming TTR = 20 minutes, TTF = 1 day, the link availability is about 98.63%
giving a failure probability of 1.36%. Setting TTR = 40 minutes gives a 2.7% failure
probability. In our experimentation, we assumed failure probabilities of 1.35% and 2.7%.
In addition, we tried a relatively pathological case with a 5.4% link failure probability.
 CEWAS was initialized in Analysis mode. Each source Si generated normal
traffic with source IP addresses selected from SIPi. This “normal” traffic source ran for
about 60-120 minutes. Random link failures were generated to effect routing changes.
Every f minutes k links were selected to fail, with each failure lasting for f minutes.
During the failure, OSPF computed new routes. At the end of failure period, links were
restored.

The link failure generator used as input the above link information, the total run
time, the number of links to be brought down concurrently and interval for link
failure/recovery. Link failures are brought about by adding iptables entries to block
outbound packets on a link. Iptables entries were cleared after the failure interval. These
entries require interface addresses on both sides of each link which were obtained by
parsing the topology map information using awk scripts and written into an array. The
link fail generator kept time for the experiment run. The links to fail at any time were

28

picked randomly. The bash random generator was used, but was seeded with 23. From
our experimentation, we found this to be a good pick for our configuration. We also
wanted to use a seed of our choosing to ensure repeatability. To index the array of links
with a generated random number it was not sufficient to use the link count as a parameter
to the modulo operator. This is because with that we did not get good distribution of
random numbers, especially when the number of links was an even number. We picked a
prime number (79) higher than the number of links. We discarded the random numbers
that would have accessed the array out of bounds. With these parameters, we found a
good distribution of links that were failed and restored. The link fail generator printed a
log of all the information about the links that was useful for debugging purposes. It also
kept a count of the number of links failed.

Figure 30: Results of Link Failures (Normal case)

In the results shown in Figure 30, each data point represents an experiment run of

duration between 1 and 2 hours. 3 link failure rates were examined: 1, 2 & 4 links were
failed corresponding to 1.35%, 2.7% & 5.4% link failures. Failed links were randomly
selected from the topology. For each link failure rate, the Time to recovery and Time to
Failure (TTR & TTF) were varied as (in minutes): 4, 8, 16, 32, 64. The false positive rate
is within 1.6% of all observed traffic. For all the link failure rates, the false positive rates
drop as the TTR/TTF increase, which is expected since the longer the TTR/TTF values
the more time the routing protocol has to recover from the link failure.

We also considered a set of pathological cases where TTR/TTF was set to 1
minute, implying a highly unstable network. In addition, a case with 8 link failures
(corresponding to a 10.8% link failure rate) was considered. The false positive rate in
these cases rises with the number of failed links. The maximum false positive rate is
around 5% corresponding, as expected, to the highest link failure rate.

29

Figure 31: Results for Link Failures (Pathological case)

7.5.5 Link Failures and Randomized Attacks
The goal of this experiment was to measure the number of attacks detected by CEWAS
under the impact of both link failures as well as randomized attacks. Each source Si
generated normal traffic with source addresses in SIPi. Route changes were induced via
link failures as in previous experiment. The EIA sets from experiment 1 were an input to
this experiment. In addition, attack traffic was generated every t seconds from a source
node Sk, with the attack trace selected randomly from the available set of attack traces.
Dagreplay was used to launch the attack packets, which are identifiable for measurement
purposes by their unique TOS byte and destination address. The source IP addresses for
the attack were selected randomly from Ui≠kSIPi, which emulated an attack with spoofed
source IP addresses.

An attack generator was launched in each of the source nodes. To alleviate the
problem of launching too many attack Dagflow instances remotely, we start an attack
generator in each of the source nodes. The attack generators in the individual nodes were
delayed for different times before generating any attack traffic so that the attacks are not
all bunched together. A random number generator was used to randomly pick the attack
traces and the source address blocks used in these attacks. The random number generators
used in the different attack generators was started with different seeds so that they did not
all generate attacks using the same trace files. We used these prime numbers as seeds:
859 863 877 881 883 887 907 911. 24 experimental cases were used, each with a run
time of 70-80 minutes. Most of them were repeated at least once.
 The inter-attack interval was set to 1, 2, 4 & 8 minutes for each of 3 different link
failure rates. The link failure rates used were 1.35% (1 link failure), 2.70% (2 link
failures) and 5.4% (4 link failures). For this set of runs the TTR/TTF for links was set to
8 minutes. Each data point corresponds to approximately 1-1.3 hours of experimentation.

30

The detection rate was seen to rise with an increase in inter-attack intervals. At least 80%
of attacks entering the target network were detected, with the typical detection rate being
between 85 and 100% of entering attacks.

Figure 32: Detection Rate for relatively stable network

For this set of runs the TTR/TTF for links was set to 4 minutes, the smallest value

used in experiment 2. This corresponds to a relatively unstable network. Each data point
corresponds to approximately 1-1.3 hours of experimentation. The detection rate was
seen to rise with an increase in inter-attack interval. At least 80% of attacks entering the
target network were detected, with the typical detection rate being between 85 and 100%
of entering attacks.

31

Figure 33: Detection Rate for relatively unstable network

The false positives, generated as a consequence of link failures, were also

measured for experiment 3. As can be seen from the figure below, the false positive rate
typically does not exceed 2% and usually is around 1.5%.

Figure 34: False Positive Rate for both network types

32

8 Summary
Telcordia has developed innovative technology for the detection of packets with fictitious
source IP addresses in large IP networks (e.g. NIPRNet). We presented the predictive
ingress filtering (InFilter) approach for network-based detection of spoofed IP packets
near the target of cyber-attacks. Our InFilter hypothesis states that traffic entering an IP
network from a specific source frequently uses the same ingress point. We have
empirically validated this hypothesis by analysis of 41,000 trace-routes to 20 Internet
targets from 24 Looking-Glass sites, and 30-days of Border Gateway Protocol-derived
path information for the same 20 targets. We have developed a system architecture and
software implementation based on the InFilter approach that can be used at Border
Routers of large IP networks to detect spoofed IP traffic. The project has resulted in 2
research papers being published in high-quality peer-reviewed conferences ([INFILTER]
and [IDSTHEORY]), in addition to a patent-application.

The extensive experimentation revealed that CEWAS exhibited a detection rate of

between 80 and 100%, depending on the attack frequency. The false positive rate for
CEWAS was typically around 1.6% of all observed traffic in the target network. Both
these metrics compare very favorably with state-of-the-art in Intrusion Detection Systems
that do not use signatures of attacks. CEWAS can be further improved by development of
a better graphical user interface that assists the analyst in narrowing down to data of
interest, incorporating distributed analysis capability to address fault tolerance and
scalability issues, and devising techniques for inline CEWAS training (instead of
requiring a separate training phase).

33

9 References
[BGP] Y.Rekhter and T. Li, “A Border Gateway Protocol,” IETF RFC 1771, March
1995.
[CAIDA] Caida website, http://www.caida.org
[CERT] R. Pethia, A. Paller, G. Spafford, “Consensus Roadmap for Defeating
Distributed Denial of Service Attacks,” http://www.sans.org/dosstep/dos_roadmap.pdf
[DAG] DAG, University of Waikato.
http://wand.cs.waikato.ac.nz/projectDetail.php?id=82
[Dagtools] Waikato Applied Network Dynamics group, “The DAG project"
http://dag.cs.waikato.ac.nz
[DETER] The DETER Testbed: Overview.
http://www.isi.edu/deter/docs/testbed.overview.pdf
[DISN] DISN Data Services - NIPRNet/SIPRNet, Tim Shannon. DISN Data Services
brief. 26 April 2005
[DISN2] Defense Information Defense Information System Network (DISN), John
Bashore. DISN brief. 26 April 2005
[DNSCACHE] DNS Cache Poisoning - The Next Generation, LURHQ Threat
Intelligence Group. http://www.lurhq.com/cachepoisoning.html
[EGRESS] Egress Filtering, http://www.sans.org/y2k/egress.htm
[FLWC] Cisco Flow Collector Overview,
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/nfc_3_0/nfc_ug/nfcover.p
df
[FLWT] Flowtools public-domain software, http://cng.ateneo.net/cng/wyu/software/flow-
tools.php
[FPROBE] Fprobe project, http://sourceforge.net/projects/fprobe
[GATED]GateD routing software, http://www.gated.org/
 [IDMEF] “The Intrusion Detection Message Exchange Format” Internet Draft, IETF
Intrusion Detection Exchange Format Working Group,
http://www.ietf.org/html.charters/idwg-charter.html
[IDSTHEORY] G. DiCrescenzo et al, “Towards a Theory of Intrusion Detection,” in
Proceedings of 10th European Symposium on Research in Computer Security, 2005.
[INFILTER] InFilter: Predictive Ingress Filtering to Detect Spoofed IP Traffic, A. Ghosh,
L. Wong, G. Di Crescenzo, and R. Talpade. In Proceedings of Workshop on Security in
Distributed Computing Systems (SDCS-2005). June 5, 2005.
[IPTABLES] The netfilter/iptables project, http://www.iptables.org/
[KOR] Eyal Kushilevitz, Rafail Ostrovsky, Yuval Rabani. “Efficient Search for
Approximate Nearest Neighbor in High Dimensional Spaces” SIAM J. Comput. 30(2):
457-474 (2000)
[LABO] C. Labovitz et al, “Internet Routing Instability,” IEEE/ACM Transactions on
Networking, October 1998.
[LGST] List of global Looking Glass sites, http://www.traceroute.org
[LINKFAILS] Analysis of link failures in an IP backbone, G. Iannaccone, C. Chuah, R.
Mortier, S. Bhattacharyya, C. Diot. 2nd ACM SIGCOMM Workshop on Internet
measurement. November 2002.

34

[MERI] R. Malan, et al, “Observations and Experiences Tracking Denial-Of-Service
Attacks across a Large Regional ISP,”
http://www.arbornetworks.com/downloads/research37/nanogSlides4.pdf
[MINDS] Levent Ertoz, et al, Detection of Novel Network Attacks Using Data Mining, in
ICDM Workshop on Data Mining for Computer Security (DMSEC), Melbourne, FL, Nov
19 (2003).
[NETF] Netflow, IETF RFC, ftp://ftp.rfc-editor.org/in-notes/rfc3954.txt
[NLANR] NLANR website, http://www.nlanr.net
[NMAP] “NMAP” http://www.insecure.org/nmap
[NS2] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/
[OSPF] J. Moy, “OSPF Version 2,” RFC 2328, April 1998.
[Peng] T. Peng, C. Leckie and R. Kotagiri. “Protection from Distributed Denial of
Service Attack Using History-based IP Filtering” IEEE International Conference on
Communications (ICC 2003), Anchorage, Alaska, USA, May, 2003.
[RTRAD] Suspicious Router Advertisement. Internet Security Systems Intrusions
database. http://www.iss.net/security_center/advice/Intrusions/2000107/default.htm
[RTVW] Routeviews project, University of Oregon, http://www.routeviews.org
[SLAM] David Moore, et al, “Inside the Slammer Worm” IEEE Security and Privacy,
1(4):33-39, July 2003.
[SLAM2] SAFE SQL Slammer Worm Attack Mitigation, Cisco Systems White Paper.
http://www.cisco.com/warp/public/cc/so/neso/sqso/worm_wp.htm
[SNORT] Snort IDS, http://www.snort.org
[STEV] W. Stevens, TCP/IP Illustrated, Volume I: The Protocols, Addison-Wesley,
1994.
[STOLFO] W. Lee, S. J. Stolfo, Data Mining Approaches for Intrusion Detection,
Proceedings of the 1998 USENIX Security Symposium, 1998.
[Templeton] S. Templeton, K. Levitt. “Detecting Spoofed Packets” Proceedings of the
Third DARPA Information Survivability Conference and Exposition (DISCEX III),
Washington, D.C., April 22-24, 2003.
[URPF] Cisco URPF Document, ftp://ftp-eng.cisco.com/cons/isp/security/URPF-ISP.pdf
[VPAX] V. Paxson, “End-to-end Routing Behavior in the Internet,” IEEE/ACM
Transactions on Networking, Vol. 5, No. 5, October 1997.

